Mesh Parameterization

Richard Liu

September 23, 2021

Introduction

Surface parameterization: construct a (bijective) map between two surfaces with similar topology

- Roots in cartography: how to make accurate map of Earth?

Mesh parameterization: construct a map between a triangular mesh and another surface (most often 2D plane)

Mesh Parameterization Applications

Figure: Parameterization Applications

Mathematical Framework

Given a function $f: X \rightarrow Y$,

Definition

f is injective or one-to-one, if $\forall x, x^{\prime} \in X, f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$.

Mathematical Framework

Given a function $f: X \rightarrow Y$,

Definition

f is injective or one-to-one, if $\forall x, x^{\prime} \in X, f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$.

Definition

f is surjective or onto, if $\forall y \in Y, \exists x \in X$ s.t. $y=f(x)$.

Mathematical Framework

Given a function $f: X \rightarrow Y$,

Definition

f is injective or one-to-one, if $\forall x, x^{\prime} \in X, f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$.

Definition

f is surjective or onto, if $\forall y \in Y, \exists x \in X$ s.t. $y=f(x)$.

Definition

f is bijective if f is both injective and surjective. Equivalently, f is bijective iff it is invertible.

Mathematical Framework

Definition

Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected (without holes) region. Let $f: \Omega \rightarrow \mathbb{R}^{3}$ be continuous and injective. The image of f is called a surface

$$
S=f(\Omega)=\{f(u, v):(u, v) \in \Omega\}
$$

We say that f is a parameterization of S over the parameter domain Ω.

Note: By construction, $f: \Omega \rightarrow S$ is trivially surjective. In practice injectivity is often what we care about.

Mathematical Framework

Example

- Parameter domain: $\Omega=\left\{(u, v) \in \mathbb{R}^{2}: u \in[0,2 \pi), v \in[0,1]\right\}$

Mathematical Framework

Example

- Parameter domain: $\Omega=\left\{(u, v) \in \mathbb{R}^{2}: u \in[0,2 \pi), v \in[0,1]\right\}$
- Surface: $S=\left\{(x, y, z) \in \mathbb{R}^{:} x^{2}+y^{2}=1, z \in[0,1]\right\}$

Mathematical Framework

Example

- Parameter domain: $\Omega=\left\{(u, v) \in \mathbb{R}^{2}: u \in[0,2 \pi), v \in[0,1]\right\}$
- Surface: $S=\left\{(x, y, z) \in \mathbb{R}^{:} x^{2}+y^{2}=1, z \in[0,1]\right\}$
- Parameterization: $f(u, v)=(\cos u, \sin u, v)$

Mathematical Framework

Example

- Parameter domain: $\Omega=\left\{(u, v) \in \mathbb{R}^{2}: u \in[0,2 \pi), v \in[0,1]\right\}$
- Surface: $S=\left\{(x, y, z) \in \mathbb{R}^{:} x^{2}+y^{2}=1, z \in[0,1]\right\}$
- Parameterization: $f(u, v)=(\cos u, \sin u, v)$
- Inverse: $f^{-1}(x, y, z)=(\arccos x, z)$

Mathematical Framework

Remark

A parameterization $f: \Omega \rightarrow S$ is never unique. Given any bijection $\gamma: \Omega \rightarrow \Omega, g=f \circ \gamma$ is a parameterization of S over Ω.

Mathematical Framework

We can use f for deriving some key intrinsic surface properties, or properties that are independent of how the surface sits in space (extrinsic geometry).

Mathematical Framework

We can use f for deriving some key intrinsic surface properties, or properties that are independent of how the surface sits in space (extrinsic geometry).

Another perspective: everything that is knowable to a tiny observable living on the surface (e.g. humans on the Earth)

Mathematical Framework

[1.9] The intrinsic geometry of the surface of a crookneck squash: geodesics are the equivalents of straight lines, and triangles formed out of them may possess an angular excess of either sign, depending on how the surface bends: $\mathcal{E}\left(\Delta_{1}\right)>0$ and $\mathcal{E}\left(\Delta_{2}\right)<0$.

Mathematical Framework

Definition

A parameterization $f: \Omega \subset \mathbb{R}^{2} \rightarrow S \subset \mathbb{R}^{3}$ is regular if the tangent vectors $f_{u}=\frac{\partial f}{\partial u}$ and $f_{v}=\frac{\partial f}{\partial v}$ are always linearly independent.

Note: f_{u}, f_{v} are functions from \mathbb{R}^{2} to \mathbb{R}^{3} and span the local tangent plane.

Mathematical Framework

Definition

Given a regular parameterization f, the surface normal n_{f} is defined as

$$
n_{f}=\frac{f_{u} \times f_{v}}{\left\|f_{u} \times f_{v}\right\|}
$$

Mathematical Framework

Definition

Given a regular parameterization f, the surface normal n_{f} is defined as

$$
n_{f}=\frac{f_{u} \times f_{v}}{\left\|f_{u} \times f_{v}\right\|}
$$

Note: regularity is required for n_{f} to be nonzero everywhere.

Mathematical Framework

Definition

Given a regular parameterization f, the surface normal n_{f} is defined as

$$
n_{f}=\frac{f_{u} \times f_{v}}{\left\|f_{u} \times f_{v}\right\|}
$$

Note: Regularity is required for n_{f} to be nonzero everywhere. Note: The surface normal is always independent of the parameterization, making it an intrinsic property.

Mathematical Framework

We can also apply f towards deriving the first and second fundamental forms. They are fundamental precisely because they determine the key metric properties of a surface, such as the gaussian curvature, mean curvature, and surface area.

Mathematical Framework

Definition

Given parameterization f, the first fundamental form is defined as

$$
\mathbf{I}_{f}=\left(\begin{array}{cc}
f_{u} \cdot f_{u} & f_{u} \cdot f_{v} \\
f_{v} \cdot f_{u} & f_{v} \cdot f_{v}
\end{array}\right)=\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)
$$

Mathematical Framework

Definition

Given parameterization f, the first fundamental form is defined as

$$
\mathrm{I}_{f}=\left(\begin{array}{ll}
f_{u} \cdot f_{u} & f_{u} \cdot f_{v} \\
f_{v} \cdot f_{u} & f_{v} \cdot f_{v}
\end{array}\right)=\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)
$$

Area of a Surface
Given parameterization $f: \Omega \rightarrow S$, the area $A(S)$ can be found

$$
A(S)=\int_{\Omega} \sqrt{\operatorname{det}\left(\mathrm{I}_{f}\right)} d u d v
$$

Mathematical Framework

Definition

Given a twice-differentiable parameterization f, the second fundamental form is defined as

$$
\mathrm{II}_{f}=\left(\begin{array}{ll}
f_{u u} \cdot n_{f} & f_{u v} \cdot n_{f} \\
f_{u v} \cdot n_{f} & f_{v v} \cdot n_{f}
\end{array}\right)=\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

Mathematical Framework

Definition

The Gaussian curvature is

$$
K=\operatorname{det}\left(I_{f}^{-1} I_{f}\right)=\frac{\operatorname{det} I_{f}}{\operatorname{det} I_{f}}=\frac{L N-M^{2}}{E G-F^{2}}
$$

Mathematical Framework

Definition

The mean curvature is

$$
S=\frac{1}{2} \operatorname{trace}\left(I_{f}^{-1} \|_{f}\right)=\frac{L G-2 M F+N E}{2\left(E G-F^{2}\right)}
$$

Mathematical Framework

Mathematical Framework

Definition

A surface S is developable if $\forall p \in S, K(p)=0$, i.e. the Gaussian curvature is 0 everywhere on S.

Mathematical Framework

Developable Surface

Three types of developable surfaces

Mathematical Framework

Definition

The Jacobian of parameterization f is the 3×2 matrix of partial derivatives of f.

$$
J_{f}=\left(f_{u}, f_{v}\right)
$$

Mathematical Framework

Definition

The Jacobian of parameterization f is the 3×2 matrix of partial derivatives of f.

$$
J_{f}=\left(f_{u}, f_{v}\right)
$$

Mathematical Framework

Definition

For any $m \times n$ matrix J, the singular value decomposition (SVD) is given by

$$
J=U \Sigma V^{T}
$$

where Σ is an $m \times n$ diagonal matrix, and U and V are $m \times m$ and $n \times n$ orthonormal matrices, respectively.

Mathematical Framework

Definition

For any $m \times n$ matrix J, the singular value decomposition (SVD) is given by

$$
J=U \Sigma V^{T}
$$

where Σ is an $m \times n$ diagonal matrix, and U and V are $m \times m$ and $n \times n$ orthonormal matrices, respectively.

By the above, the SVD of the Jacobian is

$$
J_{f}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T}
$$

where σ_{1}, σ_{2} are the singular values.

Mathematical Framework

There is an easier way to get the singular values of the Jacobian.

Mathematical Framework

There is an easier way to get the singular values of the Jacobian.

Remark

We can write the first fundamental form as

$$
\mathrm{I}_{f}=J_{f}^{T} J_{f}=\binom{f_{u}^{T}}{f_{v}^{T}}\left(\begin{array}{ll}
f_{u} & f_{v}
\end{array}\right)
$$

It is clear I_{f} is symmetric.

Mathematical Framework

There is an easier way to get the singular values of the Jacobian.

Remark

We can write the first fundamental form as

$$
\mathrm{I}_{f}=J_{f}^{T} J_{f}=\binom{f_{u}^{T}}{f_{v}^{T}}\left(\begin{array}{ll}
f_{u} & f_{v}
\end{array}\right)
$$

It is clear I_{f} is symmetric.

Thus the eigenvalues of I_{f} are given by

$$
\lambda_{1,2}=\frac{1}{2}\left((E+G) \pm \sqrt{4 F^{2}+(E-G)^{2}}\right.
$$

Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the eigenvalues of $A^{T} A$.

Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the eigenvalues of $A^{T} A$.

The singular values of J can be found using the eigenvalues of I_{f}

$$
\begin{aligned}
\sigma_{1} & =\sqrt{\lambda_{1}} \\
\sigma_{2} & =\sqrt{\lambda_{2}}
\end{aligned}
$$

Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the eigenvalues of $A^{T} A$.

The singular values of J can be found using the eigenvalues of I_{f}

$$
\begin{aligned}
\sigma_{1} & =\sqrt{\lambda_{1}} \\
\sigma_{2} & =\sqrt{\lambda_{2}}
\end{aligned}
$$

σ_{1} and σ_{2} tell us everything about the metric distortion induced by the parameterization.

Properties of Parameterizations

Parameterizations induce distortion in lengths, which can be further divided into distortion in angles and distortion in areas.

Properties of Parameterizations

Figure: SVD Decomposition of mapping \tilde{f}

Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when the singular values of the Jacobian are equal, i.e. $\sigma_{1}=\sigma_{2}$.

Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when the singular values of the Jacobian are equal, i.e. $\sigma_{1}=\sigma_{2}$.

Definition

A parameterization is equiareal/authalic, or area-preserving, when the singular values of the Jacobian multiply to 1 , i.e. $\sigma_{1} \sigma_{2}=1$.

Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when $\sigma_{1}=\sigma_{2}$.

Definition

A parameterization is equiareal/authalic, or area-preserving, when $\sigma_{1} \sigma_{2}=1$.

Definition
A parameterization is isometric, or length-preserving iff it is conformal and equiareal, i.e. $\sigma_{1}=\sigma_{2}=1$.

Properties of Parameterizations

So can we always find an isometric parameterization to the plane?

Properties of Parameterizations

So can we always find an isometric parameterization to the plane? NOPE

Properties of Parameterizations

Theorem

(Gauss, 1827) Globally isometric parameterizations (from 3D to 2D) only exist for developable surfaces (i.e. $K=0$ everywhere)

Properties of Parameterizations

So how to find the "best" parameterization?

Properties of Parameterizations

So how to find the "best" parameterization?
Take bivariate non-negative function $E: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$that takes local distortion measures σ_{1} and σ_{2}, and has minimum defined according to objective.

$$
E(f)=\int_{\Omega} E\left(\sigma_{1}(u, v), \sigma_{2}(u, v)\right) d u d v / A(\Omega)
$$

Properties of Parameterizations

So how to find the "best" parameterization?
Take bivariate non-negative function $E: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$that takes local distortion measures σ_{1} and σ_{2}, and has minimum defined according to objective.

$$
E(f)=\int_{\Omega} E\left(\sigma_{1}(u, v), \sigma_{2}(u, v)\right) d u d v / A(\Omega)
$$

e.g. E global minimum at $(1,1)=$ isometry objective
e.g. E minimal values along (x, x) for $x \in \mathbb{R}_{+}=$conformal objective

Discrete Setting

Now let's consider triangle meshes specifically, which can be considered piecewise linear surfaces.

Discrete Setting

Definition

A mesh is a triangulation $M=(V, E, F)$, where $V=\left\{v_{i}\right\} \subset \mathbb{R}^{3}$, $E=\left\{e_{i j}\right\}$, and $F=\left\{f_{i j k}\right\}$ are the vertex, edge, and face sets, respectively. More formally, edge $e_{i j}$ represents the convex hull between vertices v_{i} and v_{j} (i.e. line segment), and face $f_{i j k}$ is the convex hull of non-collinear points v_{i}, v_{j}, v_{k}.

Mesh Parameterization Properties

We already mentioned conformal and equiareal maps. Another important property for applications to meshes is bijectivity.

Mesh Parameterization Properties

We already mentioned conformal and equiareal maps. Another important property for applications to meshes is bijectivity.
e.g. For texture mapping, want to be able to annotate parts of the texture with reference to unique region of surface

Mesh Parameterization Properties

Definition

A mesh parameterization is locally injective if no triangles change orientation ("flip" or "fold over") during the parameterization.

Definition

A mesh parameterization is globally bijective if it is locally injective and the boundary of the parameterization does not intersect itself.

Mesh Parameterization Properties

Triangle Flip

Boundary Intersection

Mesh Parameterization Properties

In general, mesh parameterization methods can be characterized by the following set of properties:

- Distortion minimized: \{angle (conformal), area (equiareal), distance (isometric) \}
- Boundary: \{fixed, free\}
- Bijectivity: \{global, local\}

Mesh Parameterization Properties

In general, mesh parameterization methods can be characterized by the following set of properties:

- Distortion minimized: \{angle (conformal), area (equiareal), distance (isometric) \}
- Boundary: \{fixed, free\}
- Bijectivity: \{global, local\}

Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same general procedure.

Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same general procedure.
(1) Choose the shape of the boundary of the parameter domain and the distribution of the parameter points around the boundary.

Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same general procedure.
(1) Choose the shape of the boundary of the parameter domain and the distribution of the parameter points around the boundary.
(2) Compute barycentric coordinates for the interior vertices

Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same general procedure.
(1) Choose the shape of the boundary of the parameter domain and the distribution of the parameter points around the boundary.
(2) Compute barycentric coordinates for the interior vertices
(3) Solve a linear system based around minimizing the spring energy of the mesh

Fixed Boundary Methods

Barycenteric coordinates are simply a way of representing an interior point in a polygon (typically triangle) as a linear combination of its vertices.

Fixed Boundary Methods

Barycenteric coordinates are simply a way of representing an interior point in a polygon (typically triangle) as a linear combination of its vertices.

Definition

For a point x in the interior of a triangle $f_{i j k}=\left\{v_{i}, v_{j}, v_{k}\right\}$, values $\lambda_{i}, \lambda_{j}, \lambda_{k}$ are barycentric coordinates of x with respect to the vertices of $f_{i j k}$ if:
(1) $x=\lambda_{i} v_{i}+\lambda_{j} v_{j}+\lambda_{k} v_{k}$
(2) $\lambda_{i}+\lambda_{j}+\lambda_{k}=1$

Fixed Boundary Methods

Barycenteric coordinates are simply a way of representing an interior point in a polygon (typically triangle) as a linear combination of its vertices.

Definition

For a point x in the interior of a triangle $f_{i j k}=\left\{v_{i}, v_{j}, v_{k}\right\}$, values $\lambda_{i}, \lambda_{j}, \lambda_{k}$ are barycentric coordinates of x with respect to the vertices of $f_{i j k}$ if:
(1) $x=\lambda_{i} v_{i}+\lambda_{j} v_{j}+\lambda_{k} v_{k}$
(2) $\lambda_{i}+\lambda_{j}+\lambda_{k}=1$

Note: above definition can be easily generalized to n -gons, but barycentric coordinates are only unique when x has 3 neighbors.

Fixed Boundary Methods

Fixed boundary methods primarily differ on how to construct the barycentric coordinates, and how to deal with the boundary.

Typically want to choose a convex parameter domain. Why?

Fixed Boundary Methods

Fixed boundary methods primarily differ on how to construct the barycentric coordinates, and how to deal with the boundary.

Typically want to choose a convex parameter domain. Why?

Theorem

Tutte (1963) For a parameterization $f: \Omega \rightarrow S$ constructed by fixing the boundary and computing positive barycentric coordinates for the interior vertices, if Ω is convex, then f is bijective.

Fixed Boundary Methods

Tutte embeddings. Tutte first to introduce the above-described framework into the mesh parameterization context with his seminal work on straight-line embeddings of planar graphs.

Fixed Boundary Methods

Tutte embeddings. Tutte first to introduce the above-described framework into the mesh parameterization context with his seminal work on straight-line embeddings of planar graphs.

- $\lambda_{i j}=1 /\left|N_{i}\right|$ defined uniformly (not barycentric)
- Guarantee bijectivity under certain constraints
- No guarantee of distortion minimization

Fixed Boundary Methods

Harmonic parameterization. Eck et al.'s method makes use of harmonic coordinates, or cotangent weights (very famous).

Fixed Boundary Methods

Harmonic parameterization. Eck et al.'s method makes use of harmonic coordinates, or cotangent weights (well known).

$$
w_{i j}=\cot \gamma_{i j}+\cot \gamma_{j i}
$$

Fixed Boundary Methods

Harmonic parameterization. Eck et al.'s method makes use of harmonic coordinates, or cotangent weights (very famous).

- Minimize harmonic energy $(\triangle f(u, v)=0)$

Fixed Boundary Methods

Harmonic parameterization. Eck et al.'s method makes use of harmonic coordinates, or cotangent weights (very famous).

- Minimize harmonic energy $(\triangle f(u, v)=0)$
- Harmonic condition weaker than conformal

Fixed Boundary Methods

Harmonic parameterization. Eck et al.'s method makes use of harmonic coordinates, or cotangent weights (very famous).

- Minimize harmonic energy $(\triangle f(u, v)=0)$
- Harmonic condition weaker than conformal
- Weights can be negative when angles are obtuse \Rightarrow non-bijective parameterization

Fixed Boundary Methods

Other Coordinates.

- Wachspress coordinates (Wachspress 1975)
- Mean value coordinates (Floater 2003)

Fixed Boundary Methods

Pros

- Weights can be computed for every interior vertex even if neighbors not coplanar or more than 3 vertex neighbors

Fixed Boundary Methods

Pros

- Weights can be computed for every interior vertex even if neighbors not coplanar or more than 3 vertex neighbors
- Linear complexity

Fixed Boundary Methods

Cons

- High distortion when surface boundary highly non-convex
- Often no "natural" way of distributing parameter points along the boundary.

Fixed Boundary Methods

Cons

Figure 4.1: A: a mesh cut in a way that makes it homeomorphic to a disk, using the seamster algorithm [Sheffer and Hart, 2002]; B: Tutte-Floater parameterization obtained by fixing the border on a square; C: parameterization obtained with a free-boundary parameterization [Sheffer and de Sturler, 2001].

Fixed Boundary Methods

Workarounds

- Virtual boundary: augment 3D boundary with extra triangles (Lee et al. 2002)

Fixed Boundary Methods

Workarounds

- Virtual boundary: augment 3D boundary with extra triangles (Lee et al. 2002)
- Scaffolding: similar idea, but iteratively remeshes virtual boundary based on some distortion energy (Jiang et al. 2017)

Fixed Boundary Methods

Fig. 3.6 (a) Adding a virtual boundary to the original mesh. (b) Shape Preserving [32] parameterization of the original mesh. (c) Parameterization of the original mesh and its virtual boundary [74]. The virtual boundary vertices are fixed, allowing the real boundary vertices to move.

Free Boundary Methods

LSCM. (Levy et al. 2002) The least squares conformal maps method seeks to minimize the following conformal energy

$$
E_{L S C M}=E_{C}=\frac{1}{2} \int_{S}\left\|f_{v}-\operatorname{rot}_{90}\left(f_{u} X\right)\right\|^{2} d p=\frac{\left(\sigma_{1}-\sigma_{2}\right)^{2}}{2}
$$

Free Boundary Methods

LSCM. (Levy et al. 2002) The least squares conformal maps method seeks to minimize the following conformal energy

$$
E_{L S C M}=E_{C}=\frac{1}{2} \int_{S}\left\|f_{v}-\operatorname{rot}_{90}\left(f_{u} X\right)\right\|^{2} d p=\frac{\left(\sigma_{1}-\sigma_{2}\right)^{2}}{2}
$$

Intuition: the gradient vectors f_{u} and f_{v} are orthogonal and have the same norm.

Free Boundary Methods

Figure 4.9: A conformal parameterization transforms an elementary circle into an elementary circle.

Free Boundary Methods

DCP. (Desbrun et al 2002) Discrete conformal parameterization minimizes the dirichlet energy.

Definition

Given a parameterization $f: \Omega \subset \mathbb{R}^{2} \rightarrow S \subset R^{3}$, the Dirichlet energy measures the integral of the squared norm of the gradients.

$$
E_{D}=\frac{1}{2} \int_{S}\left\|f_{u}\right\|^{2}+\left\|f_{v}\right\|^{2} d p
$$

Free Boundary Methods

DCP. Discrete conformal parameterization (Desbrun et al 2002) minimizes the dirichlet energy.

Definition

Given a parameterization $f: \Omega \subset \mathbb{R}^{2} \rightarrow S \subset R^{3}$, the Dirichlet energy measures the integral of the squared norm of the gradients.

$$
E_{D}=\frac{1}{2} \int_{S}\left\|f_{u}\right\|^{2}+\left\|f_{v}\right\|^{2} d p
$$

The Dirichlet energy can also be expressed in terms of the singular values σ_{1}, σ_{2} of the Jacobian

$$
E_{D}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2}
$$

Free Boundary Methods

Using the singular value definitions, we can easily see that DCP and LSCM are equivalent methods.

$$
E_{D}-E_{C}=\sigma_{1} \sigma_{2}=\operatorname{det}(J)=\frac{\operatorname{Area}(\Omega)}{\operatorname{Area}(S)}
$$

Free Boundary Methods

Using the singular value definitions, we can easily see that DCP and LSCM are equivalent methods.

$$
E_{D}-E_{C}=\sigma_{1} \sigma_{2}=\operatorname{det}(J)=\frac{\operatorname{Area}(\Omega)}{\operatorname{Area}(S)}
$$

Recall: Ω is the parameter domain (2D) and S is the surface (3D). So Dirichlet and conformal energies are the same up to a fixed boundary (choice of pinned vertices) in the parameter domain.

Free Boundary Methods

LSCM/DCP. Properties

- Require two pinned vertices to avoid trivial solution (heuristic: two diameter vertices)

Free Boundary Methods

LSCM/DCP. Properties

- Require two pinned vertices to avoid trivial solution (heuristic: two diameter vertices)
- LSCM energy a flawed metric: scaled by area of parameter domain (dependent on pinned vertices)

Free Boundary Methods

LSCM/DCP. Properties

- Require two pinned vertices to avoid trivial solution (heuristic: two diameter vertices)
- LSCM energy a flawed metric: scaled by area of parameter domain
- No guarantee of local or global bijectivity

Free Boundary Methods

LSCM/DCP. Properties

- Require two pinned vertices to avoid trivial solution (heuristic: two diameter vertices)
- LSCM energy a flawed metric: scaled by area of parameter domain
- No guarantee of local or global bijectivity
- Linear (fast) and empirically lower distortion than fixed boundary methods

Free Boundary Methods

LSCM/DCP. Extensions

- Spectral conformal parameterization (Mullen et al. 2008): find solution to minimizing conformal energy without needing to pin vertices

Free Boundary Methods

LSCM/DCP. Extensions

- Spectral conformal parameterization (Mullen et al. 2008): find solution to minimizing conformal energy without needing to pin vertices
- Find Fiedler vector solution u from $L_{c} u=\lambda B u$

Free Boundary Methods

LSCM/DCP. Extensions

- Spectral conformal parameterization (Mullen et al. 2008): find solution to minimizing conformal energy without needing to pin vertices
- Hierarchical LSCM (Ray and Levy 2003): Speed-up using hierarchical solver

Free Boundary Methods

MIPS. (Hormann and Greiner 2000) First method to compute natural boundary. Minimizes the Dirichlet energy per parameter-space area

$$
K_{F}\left(J_{T}\right)=\left\|J_{T}\right\|_{F}\left\|_{T}^{-1}\right\|_{F}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{\sigma_{1} \sigma_{2}}=\frac{\operatorname{trace}\left(\mathrm{I}_{T}\right)}{\operatorname{det} J_{T}}
$$

Free Boundary Methods

MIPS. (Hormann and Greiner 2000) Iteratively move each vertex to reduce energy, checks for flips, and checks for boundary overlaps.

Free Boundary Methods

MIPS. Properties

- Nonlinear (slow)
- Global bijectivity

Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Based on the observation: a planar triangulation is defined by the corner angles of triangles (up to similarity).

Unlike previous methods, problem is defined in angle space.

Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Minimize the objective

$$
D\left(\alpha_{i}\right)=\sum_{i=1}^{3 T}\left(\alpha_{i}-\beta_{i}\right)^{2}
$$

where β_{i} are the known 3D angles and α_{i} are the unknown 2D angles.

Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Require constraints on 2D angles for "valid triangulation"

Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Require constraints on 2D angles for "valid triangulation"

- All angles positive
- Angles in each triangle sum to π
- Sum of angles around each vertex is 2π
- Edges shared by adjacent triangles have same length

Free Boundary Methods

Angle Based Flattening. Properties

- Locally bijective (but not global)

Free Boundary Methods

Angle Based Flattening. Properties

- Locally bijective (but not global)
- Non-linear (slow) and unstable for large meshes

Free Boundary Methods

Angle Based Flattening. Extensions

- Zayer et al (2003): Enforce convex boundaries on parameter domain \Rightarrow global bijectivity

Free Boundary Methods

Angle Based Flattening. Extensions

- Zayer et al (2003): Enforce convex boundaries on parameter domain \Rightarrow global bijectivity

Free Boundary Methods

Angle Based Flattening. Extensions

- Zayer et al (2003): Enforce convex boundaries on parameter domain \Rightarrow global bijectivity
- Kharevych et al (2006): Introduce cone singularities \Rightarrow global parameterization. Continuous up to translation and rotation, except at singularities.

Free Boundary Methods

Angle Based Flattening. Extensions

Comparisons

Parameterization with uniform weights [128] on a circular domain.

Parameterization with harmonic weights [28] on a circular domain.

Parameterization with mean value weights [33] on a circular domain.

Parameterization with LSCM [79].

Comparisons

$4 \square>4$ 向 >4 三

Conclusion

We have only just scratched the surface of mesh parameterization methods, and even left out a lot of newer conformal methods.

Conclusion

We have only just scratched the surface of mesh parameterization methods, and even left out a lot of newer conformal methods.

- Ricci flows
- Circle packing
- Discrete conformal equivalence
- Cone singularities
- Etc...

Resources

Mesh Parameterization: Theory and Practice (2008)
Mesh Parameterization Methods and Their Applications

