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Introduction

Surface parameterization: construct a (bijective) map between
two surfaces with similar topology

Roots in cartography: how to make accurate map of Earth?

Mesh parameterization: construct a map between a triangular
mesh and another surface (most often 2D plane)
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Mesh Parameterization Applications

Figure: Parameterization Applications
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Mathematical Framework

Given a function f : X → Y ,

Definition

f is injective or one-to-one, if ∀x , x ′ ∈ X , f (x) = f (x ′)⇒ x = x ′.
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Mathematical Framework

Given a function f : X → Y ,

Definition

f is injective or one-to-one, if ∀x , x ′ ∈ X , f (x) = f (x ′)⇒ x = x ′.

Definition

f is surjective or onto, if ∀y ∈ Y ,∃x ∈ X s.t. y = f (x).
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Mathematical Framework

Given a function f : X → Y ,

Definition

f is injective or one-to-one, if ∀x , x ′ ∈ X , f (x) = f (x ′)⇒ x = x ′.

Definition

f is surjective or onto, if ∀y ∈ Y ,∃x ∈ Xs.t.y = f (x).

Definition

f is bijective if f is both injective and surjective. Equivalently, f is
bijective iff it is invertible.
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Mathematical Framework

Definition

Let Ω ⊂ R2 be a simply connected (without holes) region.
Let f : Ω→ R3 be continuous and injective. The image of f is
called a surface

S = f (Ω) = {f (u, v) : (u, v) ∈ Ω}

We say that f is a parameterization of S over the parameter
domain Ω.

Note: By construction, f : Ω→ S is trivially surjective. In practice
injectivity is often what we care about.
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Mathematical Framework

Example

Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
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Mathematical Framework

Example

Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
Surface: S = {(x , y , z) ∈ R:x2 + y2 = 1, z ∈ [0, 1]}
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Mathematical Framework

Example

Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
Surface: S = {(x , y , z) ∈ R:x2 + y2 = 1, z ∈ [0, 1]}
Parameterization: f (u, v) = (cos u, sin u, v)
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Mathematical Framework

Example

Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
Surface: S = {(x , y , z) ∈ R:x2 + y2 = 1, z ∈ [0, 1]}
Parameterization: f (u, v) = (cos u, sin u, v)
Inverse: f −1(x , y , z) = (arccos x , z)
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Mathematical Framework

Remark

A parameterization f : Ω→ S is never unique. Given any bijection
γ : Ω→ Ω, g = f ◦ γ is a parameterization of S over Ω.
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Mathematical Framework

We can use f for deriving some key intrinsic surface properties,
or properties that are independent of how the surface sits in space
(extrinsic geometry).
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Mathematical Framework

We can use f for deriving some key intrinsic surface properties,
or properties that are independent of how the surface sits in space
(extrinsic geometry).

Another perspective: everything that is knowable to a tiny
observable living on the surface (e.g. humans on the Earth)
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Mathematical Framework
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Mathematical Framework

Definition

A parameterization f : Ω ⊂ R2 → S ⊂ R3 is regular if the tangent
vectors fu = ∂f

∂u and fv = ∂f
∂v are always linearly independent.

Note: fu, fv are functions from R2 to R3 and span the local
tangent plane.
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Mathematical Framework

Definition

Given a regular parameterization f , the surface normal nf is
defined as

nf =
fu × fv
||fu × fv ||
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Mathematical Framework

Definition

Given a regular parameterization f , the surface normal nf is
defined as

nf =
fu × fv
||fu × fv ||

Note: regularity is required for nf to be nonzero everywhere.
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Mathematical Framework

Definition

Given a regular parameterization f , the surface normal nf is
defined as

nf =
fu × fv
||fu × fv ||

Note: Regularity is required for nf to be nonzero everywhere.
Note: The surface normal is always independent of the
parameterization, making it an intrinsic property.
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Mathematical Framework

We can also apply f towards deriving the first and second
fundamental forms. They are fundamental precisely because they
determine the key metric properties of a surface, such as the
gaussian curvature, mean curvature, and surface area.
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Mathematical Framework

Definition

Given parameterization f , the first fundamental form is defined
as

If =

(
fu · fu fu · fv
fv · fu fv · fv

)
=

(
E F
F G

)
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Mathematical Framework

Definition

Given parameterization f , the first fundamental form is defined
as

If =

(
fu · fu fu · fv
fv · fu fv · fv

)
=

(
E F
F G

)

Area of a Surface

Given parameterization f : Ω→ S , the area A(S) can be found

A(S) =

∫
Ω

√
det(If )dudv
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Mathematical Framework

Definition

Given a twice-differentiable parameterization f , the second
fundamental form is defined as

IIf =

(
fuu · nf fuv · nf
fuv · nf fvv · nf

)
=

(
L M
M N

)
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Mathematical Framework

Definition

The Gaussian curvature is

K = det(I−1
f IIf ) =

det IIf
det If

=
LN −M2

EG − F 2
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Mathematical Framework

Definition

The mean curvature is

S =
1

2
trace(I−1

f IIf ) =
LG − 2MF + NE

2(EG − F 2)
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Mathematical Framework
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Mathematical Framework

Definition

A surface S is developable if ∀p ∈ S , K (p) = 0, i.e. the Gaussian
curvature is 0 everywhere on S .
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Mathematical Framework
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Mathematical Framework

Definition

The Jacobian of parameterization f is the 3 x 2 matrix of partial
derivatives of f .

Jf = (fu, fv )
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Mathematical Framework

Definition

The Jacobian of parameterization f is the 3 x 2 matrix of partial
derivatives of f .

Jf = (fu, fv )

Richard Liu Mesh Parameterization



Mathematical Framework

Definition

For any m × n matrix J, the singular value decomposition
(SVD) is given by

J = UΣV T

where Σ is an m× n diagonal matrix, and U and V are m×m and
n × n orthonormal matrices, respectively.
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Mathematical Framework

Definition

For any m × n matrix J, the singular value decomposition
(SVD) is given by

J = UΣV T

where Σ is an m× n diagonal matrix, and U and V are m×m and
n × n orthonormal matrices, respectively.

By the above, the SVD of the Jacobian is

Jf = U

σ1 0
0 σ2

0 0

V T

where σ1, σ2 are the singular values.
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Mathematical Framework

There is an easier way to get the singular values of the Jacobian.
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Mathematical Framework

There is an easier way to get the singular values of the Jacobian.

Remark

We can write the first fundamental form as

If = JTf Jf =

(
f Tu
f Tv

)
(fu fv )

It is clear If is symmetric.
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Mathematical Framework

There is an easier way to get the singular values of the Jacobian.

Remark

We can write the first fundamental form as

If = JTf Jf =

(
f Tu
f Tv

)
(fu fv )

It is clear If is symmetric.

Thus the eigenvalues of If are given by

λ1,2 =
1

2
((E + G )±

√
4F 2 + (E − G )2

.
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Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the
eigenvalues of ATA.
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Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the
eigenvalues of ATA.

The singular values of J can be found using the eigenvalues of If

σ1 =
√
λ1

σ2 =
√
λ2
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Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the
eigenvalues of ATA.

The singular values of J can be found using the eigenvalues of If

σ1 =
√
λ1

σ2 =
√
λ2

σ1 and σ2 tell us everything about the metric distortion induced
by the parameterization.
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Properties of Parameterizations

Parameterizations induce distortion in lengths, which can be
further divided into distortion in angles and distortion in areas.
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Properties of Parameterizations

Figure: SVD Decomposition of mapping f̃
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Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when the
singular values of the Jacobian are equal, i.e. σ1 = σ2.
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Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when the
singular values of the Jacobian are equal, i.e. σ1 = σ2.

Definition

A parameterization is equiareal/authalic, or area-preserving,
when the singular values of the Jacobian multiply to 1, i.e.
σ1σ2 = 1.
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Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when
σ1 = σ2.

Definition

A parameterization is equiareal/authalic, or area-preserving,
when σ1σ2 = 1.

Definition

A parameterization is isometric, or length-preserving iff it is
conformal and equiareal, i.e. σ1 = σ2 = 1.
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Properties of Parameterizations

So can we always find an isometric parameterization to the plane?
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Properties of Parameterizations

So can we always find an isometric parameterization to the plane?

NOPE
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Properties of Parameterizations

Theorem

(Gauss, 1827) Globally isometric parameterizations (from 3D to
2D) only exist for developable surfaces (i.e. K = 0 everywhere)
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Properties of Parameterizations

So how to find the “best” parameterization?
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Properties of Parameterizations

So how to find the “best” parameterization?

Take bivariate non-negative function E : R2
+ → R+ that takes local

distortion measures σ1 and σ2, and has minimum defined
according to objective.

E (f ) =

∫
Ω
E (σ1(u, v), σ2(u, v))dudv/A(Ω)
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Properties of Parameterizations

So how to find the “best” parameterization?

Take bivariate non-negative function E : R2
+ → R+ that takes local

distortion measures σ1 and σ2, and has minimum defined
according to objective.

E (f ) =

∫
Ω
E (σ1(u, v), σ2(u, v))dudv/A(Ω)

e.g. E global minimum at (1, 1) = isometry objective

e.g. E minimal values along (x , x) for x ∈ R+ = conformal
objective
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Discrete Setting

Now let’s consider triangle meshes specifically, which can be
considered piecewise linear surfaces.
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Discrete Setting

Definition

A mesh is a triangulation M = (V ,E ,F ), where V = {vi} ⊂ R3,
E = {eij}, and F = {fijk} are the vertex, edge, and face sets,
respectively. More formally, edge eij represents the convex hull
between vertices vi and vj (i.e. line segment), and face fijk is the
convex hull of non-collinear points vi , vj , vk .
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Mesh Parameterization Properties

We already mentioned conformal and equiareal maps. Another
important property for applications to meshes is bijectivity.
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Mesh Parameterization Properties

We already mentioned conformal and equiareal maps. Another
important property for applications to meshes is bijectivity.

e.g. For texture mapping, want to be able to annotate parts of the
texture with reference to unique region of surface
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Mesh Parameterization Properties

Definition

A mesh parameterization is locally injective if no triangles change
orientation (“flip” or “fold over”) during the parameterization.

Definition

A mesh parameterization is globally bijective if it is locally
injective and the boundary of the parameterization does not
intersect itself.

Richard Liu Mesh Parameterization



Mesh Parameterization Properties
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Mesh Parameterization Properties

In general, mesh parameterization methods can be characterized by
the following set of properties:

Distortion minimized: {angle (conformal), area (equiareal),
distance (isometric)}

Boundary: {fixed, free}

Bijectivity: {global, local}
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Mesh Parameterization Properties

In general, mesh parameterization methods can be characterized by
the following set of properties:

Distortion minimized: {angle (conformal), area (equiareal),
distance (isometric)}

Boundary: {fixed, free}

Bijectivity: {global, local}
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Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same
general procedure.
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Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same
general procedure.

1 Choose the shape of the boundary of the parameter domain
and the distribution of the parameter points around the
boundary.
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Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same
general procedure.

1 Choose the shape of the boundary of the parameter domain
and the distribution of the parameter points around the
boundary.

2 Compute barycentric coordinates for the interior vertices
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Fixed Boundary Methods

Boundary-based, or barycentric mappings all follow the same
general procedure.

1 Choose the shape of the boundary of the parameter domain
and the distribution of the parameter points around the
boundary.

2 Compute barycentric coordinates for the interior vertices

3 Solve a linear system based around minimizing the spring
energy of the mesh
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Fixed Boundary Methods

Barycenteric coordinates are simply a way of representing an
interior point in a polygon (typically triangle) as a linear
combination of its vertices.
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Fixed Boundary Methods

Barycenteric coordinates are simply a way of representing an
interior point in a polygon (typically triangle) as a linear
combination of its vertices.

Definition

For a point x in the interior of a triangle fijk = {vi , vj , vk}, values
λi , λj , λk are barycentric coordinates of x with respect to the
vertices of fijk if:

1 x = λivi + λjvj + λkvk
2 λi + λj + λk = 1
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Fixed Boundary Methods

Barycenteric coordinates are simply a way of representing an
interior point in a polygon (typically triangle) as a linear
combination of its vertices.

Definition

For a point x in the interior of a triangle fijk = {vi , vj , vk}, values
λi , λj , λk are barycentric coordinates of x with respect to the
vertices of fijk if:

1 x = λivi + λjvj + λkvk
2 λi + λj + λk = 1

Note: above definition can be easily generalized to n-gons, but
barycentric coordinates are only unique when x has 3 neighbors.
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Fixed Boundary Methods

Fixed boundary methods primarily differ on how to construct the
barycentric coordinates, and how to deal with the boundary.

Typically want to choose a convex parameter domain. Why?
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Fixed Boundary Methods

Fixed boundary methods primarily differ on how to construct the
barycentric coordinates, and how to deal with the boundary.

Typically want to choose a convex parameter domain. Why?

Theorem

Tutte (1963) For a parameterization f : Ω→ S constructed by
fixing the boundary and computing positive barycentric coordinates
for the interior vertices, if Ω is convex, then f is bijective.
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Fixed Boundary Methods

Tutte embeddings. Tutte first to introduce the above-described
framework into the mesh parameterization context with his seminal
work on straight-line embeddings of planar graphs.
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Fixed Boundary Methods

Tutte embeddings. Tutte first to introduce the above-described
framework into the mesh parameterization context with his seminal
work on straight-line embeddings of planar graphs.

λij = 1/|Ni | defined uniformly (not barycentric)

Guarantee bijectivity under certain constraints

No guarantee of distortion minimization
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Fixed Boundary Methods

Harmonic parameterization. Eck et al.’s method makes use of
harmonic coordinates, or cotangent weights (very famous).
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Fixed Boundary Methods

Harmonic parameterization. Eck et al.’s method makes use of
harmonic coordinates, or cotangent weights (well known).

wij = cot γij + cot γji
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Fixed Boundary Methods

Harmonic parameterization. Eck et al.’s method makes use of
harmonic coordinates, or cotangent weights (very famous).

Minimize harmonic energy (4f (u, v) = 0)
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Fixed Boundary Methods

Harmonic parameterization. Eck et al.’s method makes use of
harmonic coordinates, or cotangent weights (very famous).

Minimize harmonic energy (4f (u, v) = 0)

Harmonic condition weaker than conformal
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Fixed Boundary Methods

Harmonic parameterization. Eck et al.’s method makes use of
harmonic coordinates, or cotangent weights (very famous).

Minimize harmonic energy (4f (u, v) = 0)

Harmonic condition weaker than conformal

Weights can be negative when angles are obtuse ⇒
non-bijective parameterization
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Fixed Boundary Methods

Other Coordinates.

Wachspress coordinates (Wachspress 1975)

Mean value coordinates (Floater 2003)
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Fixed Boundary Methods

Pros

Weights can be computed for every interior vertex even if
neighbors not coplanar or more than 3 vertex neighbors
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Fixed Boundary Methods

Pros

Weights can be computed for every interior vertex even if
neighbors not coplanar or more than 3 vertex neighbors

Linear complexity
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Fixed Boundary Methods

Cons

High distortion when surface boundary highly non-convex

Often no “natural” way of distributing parameter points along
the boundary.
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Fixed Boundary Methods

Cons
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Fixed Boundary Methods

Workarounds

Virtual boundary: augment 3D boundary with extra triangles
(Lee et al. 2002)
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Fixed Boundary Methods

Workarounds

Virtual boundary: augment 3D boundary with extra triangles
(Lee et al. 2002)

Scaffolding: similar idea, but iteratively remeshes virtual
boundary based on some distortion energy (Jiang et al. 2017)
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Fixed Boundary Methods
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Free Boundary Methods

LSCM. (Levy et al. 2002) The least squares conformal maps
method seeks to minimize the following conformal energy

ELSCM = EC =
1

2

∫
S
||fv − rot90(fuX )||2dp =

(σ1 − σ2)2

2
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Free Boundary Methods

LSCM. (Levy et al. 2002) The least squares conformal maps
method seeks to minimize the following conformal energy

ELSCM = EC =
1

2

∫
S
||fv − rot90(fuX )||2dp =

(σ1 − σ2)2

2

Intuition: the gradient vectors fu and fv are orthogonal and have
the same norm.
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Free Boundary Methods
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Free Boundary Methods

DCP. (Desbrun et al 2002) Discrete conformal parameterization
minimizes the dirichlet energy.

Definition

Given a parameterization f : Ω ⊂ R2 → S ⊂ R3, the Dirichlet
energy measures the integral of the squared norm of the gradients.

ED =
1

2

∫
S
||fu||2 + ||fv ||2dp
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Free Boundary Methods

DCP. Discrete conformal parameterization (Desbrun et al 2002)
minimizes the dirichlet energy.

Definition

Given a parameterization f : Ω ⊂ R2 → S ⊂ R3, the Dirichlet
energy measures the integral of the squared norm of the gradients.

ED =
1

2

∫
S
||fu||2 + ||fv ||2dp

The Dirichlet energy can also be expressed in terms of the singular
values σ1, σ2 of the Jacobian

ED =
σ2

1 + σ2
2

2
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Free Boundary Methods

Using the singular value definitions, we can easily see that DCP
and LSCM are equivalent methods.

ED − EC = σ1σ2 = det(J) =
Area(Ω)

Area(S)
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Free Boundary Methods

Using the singular value definitions, we can easily see that DCP
and LSCM are equivalent methods.

ED − EC = σ1σ2 = det(J) =
Area(Ω)

Area(S)

Recall: Ω is the parameter domain (2D) and S is the surface (3D).
So Dirichlet and conformal energies are the same up to a fixed
boundary (choice of pinned vertices) in the parameter domain.
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Free Boundary Methods

LSCM/DCP. Properties

Require two pinned vertices to avoid trivial solution (heuristic:
two diameter vertices)
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Free Boundary Methods

LSCM/DCP. Properties

Require two pinned vertices to avoid trivial solution (heuristic:
two diameter vertices)

LSCM energy a flawed metric: scaled by area of parameter
domain (dependent on pinned vertices)
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Free Boundary Methods

LSCM/DCP. Properties

Require two pinned vertices to avoid trivial solution (heuristic:
two diameter vertices)

LSCM energy a flawed metric: scaled by area of parameter
domain

No guarantee of local or global bijectivity
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Free Boundary Methods

LSCM/DCP. Properties

Require two pinned vertices to avoid trivial solution (heuristic:
two diameter vertices)

LSCM energy a flawed metric: scaled by area of parameter
domain

No guarantee of local or global bijectivity

Linear (fast) and empirically lower distortion than fixed
boundary methods
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Free Boundary Methods

LSCM/DCP. Extensions

Spectral conformal parameterization (Mullen et al. 2008):
find solution to minimizing conformal energy without needing
to pin vertices

Richard Liu Mesh Parameterization



Free Boundary Methods

LSCM/DCP. Extensions

Spectral conformal parameterization (Mullen et al. 2008):
find solution to minimizing conformal energy without needing
to pin vertices

Find Fiedler vector solution u from Lcu = λBu
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Free Boundary Methods

LSCM/DCP. Extensions

Spectral conformal parameterization (Mullen et al. 2008):
find solution to minimizing conformal energy without needing
to pin vertices

Hierarchical LSCM (Ray and Levy 2003): Speed-up using
hierarchical solver
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Free Boundary Methods

MIPS. (Hormann and Greiner 2000) First method to compute
natural boundary. Minimizes the Dirichlet energy per
parameter-space area

KF (JT ) = ||JT ||F ||J−1
T ||F =

σ2
1 + σ2

2

σ1σ2
=

trace(IT )

det JT
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Free Boundary Methods

MIPS. (Hormann and Greiner 2000) Iteratively move each vertex
to reduce energy, checks for flips, and checks for boundary
overlaps.
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Free Boundary Methods

MIPS. Properties

Nonlinear (slow)

Global bijectivity
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Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Based on
the observation: a planar triangulation is defined by the corner
angles of triangles (up to similarity).

Unlike previous methods, problem is defined in angle space.
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Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Minimize
the objective

D(αi ) =
3T∑
i=1

(αi − βi )2

where βi are the known 3D angles and αi are the unknown 2D
angles.
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Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Require
constraints on 2D angles for “valid triangulation”
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Free Boundary Methods

Angle Based Flattening. (Sheffer and de Sturler 2000) Require
constraints on 2D angles for “valid triangulation”

All angles positive

Angles in each triangle sum to π

Sum of angles around each vertex is 2π

Edges shared by adjacent triangles have same length
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Free Boundary Methods

Angle Based Flattening. Properties

Locally bijective (but not global)
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Free Boundary Methods

Angle Based Flattening. Properties

Locally bijective (but not global)

Non-linear (slow) and unstable for large meshes
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Free Boundary Methods

Angle Based Flattening. Extensions

Zayer et al (2003): Enforce convex boundaries on parameter
domain ⇒ global bijectivity
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Free Boundary Methods

Angle Based Flattening. Extensions

Zayer et al (2003): Enforce convex boundaries on parameter
domain ⇒ global bijectivity
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Free Boundary Methods

Angle Based Flattening. Extensions

Zayer et al (2003): Enforce convex boundaries on parameter
domain ⇒ global bijectivity

Kharevych et al (2006): Introduce cone singularities ⇒ global
parameterization. Continuous up to translation and rotation,
except at singularities.
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Free Boundary Methods

Angle Based Flattening. Extensions
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Comparisons
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Comparisons
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Conclusion

We have only just scratched the surface of mesh
parameterization methods, and even left out a lot of newer
conformal methods.
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Conclusion

We have only just scratched the surface of mesh
parameterization methods, and even left out a lot of newer
conformal methods.

Ricci flows

Circle packing

Discrete conformal equivalence

Cone singularities

Etc...
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Resources

Mesh Parameterization: Theory and Practice (2008)

Mesh Parameterization Methods and Their Applications
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https://dl.acm.org/doi/pdf/10.1145/1508044.1508091
http://people.eecs.berkeley.edu/~jrs/meshpapers/ShefferPraunRose.pdf

